This simple energy consumption diagram shows a breakdown of electric energy in a company. It is shown – along with a second Sankey diagram – on the website of German consulting firm RQH consult.

Flows are in MWh electric energy. The largest chunk of the 9,100 MWh (per year?) is consumed by ‘Spritzguss inkl. WP und Brunnenpumpe’ (Google translate: ”Injection including WP and well pump”)

Nice to see that more and more applications now use Sankey diagrams rather than pie charts to visualize distributions. In this case it is a widget available in the dashboard of Boundary, a real-time application performance measurment (APM) suite.

Inbound traffic is on the left side in green, outbound traffic to the right in blue. Only the top five connected hosts by traffic are shown. Inbound and outbound traffic is about the same size, so they have the same height in the stacked part in the middle.

Similar to the cargo traffic Sankey diagram I did here, but in this case the traffic is not traffic of physical goods…

Following up to my last post, here is another Sankey diagram for phosphorus flows. This one is by Jason Pearson, TRUTHstudio and can be found in the ‘Visualization’ section of his website. Jason is also the designer of the Economy Maps (see this March 2012 post).

Jason says that “the diagram demonstrates the key point: that only 15% of the phosphorous in the US food supply chain is ingested, with the remainder ending up as waste. The diagram also shows the proportion of phosphorous used or wasted in non-food supply chains”

This one is more colorful than the Dutch one. Flows are in kt (kilotons). It has a left-to-right orientation (the other was vertical) and is very compact with almost no space betweend the bands, almost like in a block-style diagram. As a concession to this dense style, diagonal arrows don’t maintain their width.

A recent visit to an organic farm and a chat with one of the staff on peak phosphorus made me search for Sankey diagrams on phophorus flows. Managed to find two, one of which is shown below. It is from an article ‘Phosphate recovery from animal manure the possibilities in the Netherlands’ by Van Ruiten Adviesbureau / Projectbureau BMA, for CEEP (November 1998) and shows phosphorus flows in the Netherlands in 1995 in million kg-P.

“It can be seen that 84 million kg P are imported in cattle feed alone (roughly 1/3 of the amount of P that is imported in phosphate ore). The excretion of phosphorus in animal manure is 86 million kg P according to the chart (about 197 million kg P2O5) … Moreover the figure shows that discharges of household and industrial waste water contain 10 million kg P. This is about 1/10 of the amount of P in animal manure.”

OK, this ia black/white retro style, but nevertheless a good Sankey diagram with flows to scale. Three vertical “columns” are for actual phosphorus imports: The largest quantity is direct imports (from phosphate rock, as phopshoric acid, and other organic phosphorous). The middle import column is for phosphorus embodied in food stuffs and animal feed. The third import pathway into the Netherlands is in waterways, such as the Rhine river, but this fraction remains unused. A large quantity of phosphorus is exported again (flows branching out to the left). 77 million kg-P per year accumulate in the soil. Another interesting detail is the flow labeled “stock mutations and statistical differences” branching out to the right.

Also see this post with a nitrogen flow Sankey diagrams from the Netherlands.

I will dig out the other phophorus Sankey and present it here in the near future…

Just a quick post with a Sankey diagram for water flows in a hotel. Apprently from a research project called Zer0-M. More images here.

No units for the streams, so I just guess these are litres per hotel guest per day or cubic metres per day. Unicolor, no directed arrows.

As promised in this post on U.S. 2010 Energy Flows here are some other Sankey diagrams from a July 2012 publication by Eric Shuster, NETL/DOE. These diagrams show world trade flows for coal.

The first one features the top coal exporters and their 2010 exports of coal to the regions America, Europe and Asia. This does not include domestic production, but just export. Indonesia and Australia are clearly the main exporters. Unit is in Mio short tons.

The other coal Sankey diagram is for U.S. coal imports and exports in 2010. Here the unit is in 1,000s of short tons, hence the two must not be directly compared. Also, the inset of the yellow arrow for domestic production in comparison to U.S. import/export is not to scale with the other flows shown on the flow map. In fact, all the blue Sankey arrows appear as a small export flow (81,716) in the yellow Sankey miniature, and all red flows on the world map are summarized as the tiny import flows (19,353).

The U.S. is primarily using its domestic coal and still able to export the surplus.

Stay tuned to see the world’s natural gas flows from the same publication