Category: Samples

Energy Sankey Diagram for Japan

Some of you might have noticed that I tend to get somewhat excited when I discover Sankey diagrams in other languages.

Here is one I dug out on this webpage of the Tsuji Labs at Osaka University in Japan, and it has the honor to be the first one presented on this blog in Japanese!

The diagram shows the “energy flows” (エネルギーフロー) as relative values for the year 1993 only. On the left side we can see that more than 80% of the energy consumed in Japan were produced from imported fuels (輸入), while only 17.8% came from domestic production (国内生産). The quantities are broken down into the different types of fuels, such as crude oil (原油, 46,1%) , natural gas (天然ガス, 10,5%) or hard coal (石炭, 16,4%). The right side of the diagram shows the consumption sectors, with industry (31%), residential (16,9%) and transport (15,6%).

Losses are at 29% which seems relatively low, if you compare to similar Sankey diagrams from the U.S. But then I am not sure if they accounted for the losses in the same way for this diagram.

There are these two other similar Sankey diagram thumbnails on that site, and my guess is that they represent different energy scenarios, considering renewable energy sources, as an option to reduce dependency from imports. Maybe someone who can read and understand more Japanese than I do wants to comment?

Biomass Utilization Potential

The first Sankey diagrams in Lao language I have come across are from a management summary on “Alternative Energy and Energy Conservation in ACMECS countries”. It shows how much biomass from wood industry, rice mills and other sources is available in the People’s Democratic Republic of Laos as rejects, and could potentially be used for generating energy. All values in tons per year for 2004 or 2005, extrapolated to the whole country from 4 to 6 samples.


Wood Industry: pink arrow is for sawdust, dark yellow arrow for woodbits, summing up to roughly 25%


Rice Mills: green arrow is for rice bran, yellow arrow for husks, summing up to 40%


Corncobs: orange arrow (20%) is corncob reject that could potentially be used for energy generation.

Even though I don’t read or write Thai, I love those letters. For those of you who wish to read the summary in English (with only 2 Sankey diagrams), a translation is available. Update Nov 2008: Unfortunately the website http://www.dede-acmecs.com has gone offline

Greenhouse Effect Explained with Sankey Diagram

Doing a Google image search on ‘greenhouse effect’ brings up numerous versions of a diagram, that shows solar radiation partially being filtered by the atmosphere, partially hitting earth’s surface. This energy heats the earth, a part is being reflected as infrared radiation, where it is not able to escape fully due to greenhouse gas molecules from man-made emissions’ accumulated in the atmosphere.

While some of these greenhouse effect diagrams use simple arrows, some of them show the energy levels with Sankey-like arrows.

Wikipedia has one of these as an illustration for the article on the greenhouse effect. Originally designed for Global Warming Art it is also available in the Wikimedia Commons in Finnish and in Japanese.

Many of the “normal” diagrams are very appealing, and I especially like the one’s that target at kids or students. However, the diagram using Sankey arrows conveys more information. Check for yourself by comparing the two examples above.

Incoming and outgoing cargo @ Rotterdam Port

Last weekend I had the possibility to visit a friend in the Netherlands, and we took a tour of Rotterdam Port. Despite the bad weather, I was fascinated by the huge container ships, the cranes, the noises….

Back home I did some research and came up with the cargo data for the year 2005 from the Port of Rotterdam website.

I did the following three Sankey diagrams. The first shows the inbound cargo quantities (in million tons gross weight of cargo) from the left, and the outbound quantities to the right, broken down to world regions. One can clearly see that Rotterdam handles mainly imports, with more than 281 million tons of cargo being unloaded, while only 88,2 million tons of cargo are being loaded onto ships.

Next I flipped inbound and outbound flows to the same side. However, I think that by this the diagram loses somehow, also because some purple flows (outbound to Africa and Oceania) are too thin.

In the third version, I added a shape for the balance difference between inbound and outgoing goods.

Tell me what you think about theses Sankey diagrams. It would be interesting to compare Rotterdam to other ports. Shanghai, for example, might have the opposite picture with much more exports, but I haven’t found any data yet to show this. And, if we are talking cargo traffic: how about doing a passenger Sankey diagram for one of the international airports in the U.S. (by origin/destination continent?, by airline?)

Decentralized Energy Benefits

The World Alliance for Decentralized Energy (WADE) runs a website on decentralized energy, called localpower.org. It has a strong educational element, and shows the benefits of producing energy locally, rather than in central power plants.

“Centralized power plants waste huge amounts of energy because their heat output cannot be used locally. Efficiency of the US electricity system, for example, is even lower today than in the early 20th century, and far below its potential.”

WADE - Showing the losses of centralized power plants

The Sankey diagram shown on the website (full size image) illustrates the losses of centralized power generation and is explained as follows:

The large red arrow represents energy from all fuels wasted in the form of waste heat. Capturing waste heat then clearly represents the largest source of potential for efficiency improvement. (…)
The smaller red arrows represent power consumed by the power plants themselves and the power lost during transmission and distribution respectively. The yellow arrows represent the actual useful energy derived from the original fuel inputs – about a third of the actual energy society should be aiming to use.

I won’t be going into the pros and cons of decentralized energy or centralized power, but rather highlight the good and the weak points of how Sankey diagrams are presented: This Sankey diagram doesn’t show any units, a fact that makes it susceptible to criticism. The insterstices in the green area on the left, meant to be separation lines, are somewhat strange (they make me think of an ancient Mayan comb), and do of course conflict with the idea of maintaining arrow width to scale. Lastly, the large arrow heads on the right side overdo the real width, underpinning the statement that a large portion of energy is being lost.

Biomass dominates energy flows in Sri Lanka

Do you know what country uses the top level domain “.lk”? Well, I didn’t know it either, until I came across this fine Sankey diagram of the energy flows of Sri Lanka on the website of the country’s Energy Conservation Fund. This island country (formerly known as Ceylon) has some 20 million inhabitants.

The flows in this Sankey diagram are in ‘kTOE’ (TOE = tons of oil equivalent). It shows that most of Sri Lanka’s energy in 2003 came from domestic biomass, the second largest domestic source is hydro power. Imported sources of energy are crude oil (refined in the -currently- sole Sri Lankan oil refinery), petroleum and a small portion of coal.

On the consumption side the largest energy using sector is domestic/commercial, followed by industry (using biomass generated energy as well) and transportation.

Transmission losses are relatively small compared to the situation in other countries. The energy flow picture of Sri Lanka thus is quite different to those I have previously presented here on this blog, such as for the U.S. or for Scotland.

What it takes to power a bulb

An article titled “Sustainable energy use and management” by Prof. Donald Cleland from Massey University in Palmerston North, New Zealand (published in: People and Energy: How do we use it? Proceedings of a conference organised by the Royal Society of New Zealand in Christchurch on 18 November 2004, p. 82-84, Wellington 2005) features three neat Sankey diagrams as an example for (un)sustainable energy use.

It is a comparison of how much energy is being used to power a lamp. The Sankey diagrams does not work with absolute values, but rather are scaled to one unit of “useful light”. You should read them “upstream” (from right to left) for better understanding. The first two diagrams (a and b) are regular incandescent bulbs. The third one (c) is a compact fluorescent light (CFL) bulb.

The bulb in the first scenario (a) is powered with energy from a coal/gas plant, which has an efficiency of only 35%. Further losses occur during transmission and distribution and at the bulb itself (98%).

In the second diagram (b) a combined cycle gas turbine (CCGT) power station provides the energy. It has a 50% efficiency.

The third one (c) uses energy from a common coal/gas plant again, but the customer uses a CFL bulb.

“A CFL is about 5 times more efficient so the losses reduce from 98% to 90%. In other words, a 20 W CFL produces about the same light as a 100 W incandescent bulb. Translated through the supply chain this means that the primary energy use is reduced to 64 units per unit of light, even if [a coal/gas plant] is still used. This is an 80% reduction in energy use. The benefit of a demand-side technology addressing the most inefficient part of the supply-chain is clear.”

Thus, the same amount of useful light can be produced at 64 units of energy in contrast to 320 units of energy.

Note: In the original publication the Sankey diagrams are not to scale to each other, so that the arrows for the primary energy values (320 units in the first, 224 units in the second, and 64 units in the third one) on the left all show the same magnitude. By bringing all three flow diagrams to the same scale, the significant difference between them becomes even more visible.

Heat Losses of a Family Home

A few months ago I had found this b/w Sankey diagram on the website of the Institut de Génie Thermique (IGT) de la Haute Ecole d’Ingénierie et de Gestion du Canton de Vaud (HEIG-VD) in Switzerland, showing the energy or heat balance (bilan thermique) of an average family home.

It visualizes the sources of heat as Sankey flows into the building (in MJ per square metre) with the largest chunk being the combustible for the heating system, other inputs are from solar radiation and internal sources. On the right side it shows how and where heat is being lost: windows (fenétres) 122 MJ/m², ventilation (aéreation) 113 MJ/m² or roof (toit) 57 MJ/m². Also, the technical losses from the heating equipment (pertes techniques, shown as Sankey arrow from the heater to the top) are quite significant (57 MJ/m²).

A similar Sankey diagram in German was presented on the e!Sankey forum recently.

This diagram submitted by one of their users is explained as follows:

In the diagram the group of flows in red colors are heat losses due to transmissions through walls, windows, doors, etc. The dark blue arrow shows heat loss through ventilation. The stacked purple/mauve flow represents heat losses at equipment and pipes.

While a little more detailed in the number of flows, it shows the same general situation: In many houses “a lot of the heat gets lost due to heat leaks (thermal bridges) or insufficient external insulation.”