Denmark’s Energy Flows for the year 2016 were published by Danish Energy Agency (‘Energistyrelsen’).

For detail, I recommend to study the high-quality image of the Sankey diagam in this PDF.

Flows are in petajoule (PJ). Smaller flows are shown with a minimum width, so they are not to scale with the others, but remain visible. Even zero flows are shown, either because there is actually a quantity (less than 1 PJ) that is just rounded, or, because in other years there might be a flow quantity available for them. Arrows arrive at the nodes separately, their flow labels shown inside the node. This feature enhances legibility quite a bit.

Also see this 2012 post on a Denmark 2050 Nuclear Free Energy Scenario.

Botswana, a country with just over 2 million population, borders South Africa to the North. Would you be able to tell its capital?

Nevertheless, a Sankey diagram with the energy balance of Botswana can be found on the web. Mike Mooiman, a professor at Franklin Pierce University, New Hampshire and a former visiting scholar at University of Botswana featured it on his ‘Energy in Botswana’ blog. These are the energy flows for the African country for 2015 (based on IEA data).


Flows are in terajoule (TJ) and overall energy demand was 120,138 TJ. Biomass (wood) is the predominant fuel in private households (e.g. for cooking). Locally mined coal accounts for 40% of the primary energy and is used for electricity generation with an efficiency factor of below 30%. Imported oil products account for over 40% of the energy consumed (mainly for transportation).

The 2012 energy balance for Botswana is also available on Mike’s blog.

Unpretentious and humble, quietly producing beautifully crafted Sankey diagrams … this is one reason why I admire the Swiss (and also for their Swiss Schoki, cheese and engineering skills).

This is the energy flow chart for the Swiss canton ‘Basel-Stadt’ for 2014 published by the Statistics Agency of the canton (Statistisches Amt des Kantons Basel-Stadt).

Flows are in Gwh. Nine different energy sources on the left, but only three sectors of energy use: transport, residential and non-residential. Observe how the colors of the icons match the corresponding colors of the arrows. Flow quantities below approximately 150 GWh are not true to scale and are drawn with a minimum width to keep them visible. The footnote alerts the reader to this graphical pecularity.

This Sankey diagram does set a standard for other similar energy flow charts, in my opinion.

Download the report from here (in German), the diagram is on page 11.

From a paper ‘Integration of deep geothermal energy and woody biomass conversion pathways in urban systems’ by Stefano Moret, Emanuela Peduzzi, Léda Gerber and François Maréchal published at Researchgate, this figure of the energy balance of the city of Lausanne (Switzerland).

Flows are in GWh for the year 2012.

Sankey diagram presently not available. Please view article directly at Researchgate.

Nouvelle-Aquitaine is a region in the southwest of France, with Bordeaux being its capital.

France, despite being a rather centralized, Paris-focused country relies on a decentralized approach for sustainable development, greenhouse gas (GHG) emissions reductions and energy saving. Thirteen so-called ‘regional energy agencies’ have been founded since 1995 engaging with regional actors and local communities. AREC (Agence Régionale d’Évaluation Environnement et Climat) is the environment and climate agency for the Nouvelle-Aquitaine region.

Many publications on energy and climate change are available on their website. Below is a Sankey diagram depicting the regional energy balance for Nouvelle-Aquitaine (Source: ‘Profil énergie et gaz à effet de serre en Nouvelle-Aquitaine – Année 2015 – Edition 2017’).

Flows are in GWh for 2015. Overall primary energy was 283.605 GWh, with 182.719 GWh final energy consumption. On the left side energy sources are split into imports (from outside Nouvelle-Aquitaine, 88%) and regionally produced energy, 12%). As is common in France, nuclear energy dominates the picture. On the right side we see the breakdown of energy consumption. The services sector (tertiary sector) is featured explicitly. It is responsible for 13% of Nouvelle-Aquitaine’s energy consumption, less than industry (19%) but more than agriculture (5%).

The Sankey diagram is very colorful and sports round icons. This goes well with the overall style of the report that targets explicitly at local communities and actors.

Styria is the second largest state of Austria, in the south eastern part of the country. It is famous for its beautiful mountains, its wines and some decent yodelling 🙂

It is also home to green tech industries, in fact “Styria is home to more than 150 clean technology companies … [whose] revenue totals €2.7 billion. This equals to 8 percent of the Gross Regional Product (GRP), and is one of the highest concentrations of leading clean technology companies in Europe.” (Wikipedia)

The ‘Styrian Promise’ is a project aiming at the implementation of energetically and economically meaningful energy efficiency concepts in Styian production companies. Case studies from food, textiles, metals and other industries are presented on the project wiki.

Above is a Sankey diagram depicting the energy balance at Obersteirische Molkerei Knittelfeld (Upper-Styrian dairy in Knittelfeld). Flows are in MWh per year. The main energy requirement is steam from natural gas: Whey drying and steam for milk pre-heating are the largest consumers of process heat. Read more detail on the dairy production here.

Published on the ‘The Efficient Appliances Blog’ is Pakistan’s First Energy Flow Diagram by Nida Rizwan Farid. The Sankey diagram is a piece of work for Pakistan’s Integrated Energy Plan and covers energy data for 2012/2013.

A more detailed explanation of the energy situation is given on this page. The author observes that “[o]ut of the 40.2 MTOE of final energy that trickles down the consumers, 72.7% of it is lost by the usage of inefficient appliances, motor vehicles and industrial processes. Only 10.96 MTOE of useful energy is received.”

The energy balance of the German city of Stuttgart has been mapped as a Sankey diagram.

This was part of the project ‘SEE Stuttgart’ (City with Energy Efficiency / “Stadt mit Energie-Effizienz”) and has been developed by Fraunhofer IBP research institute.

A vertical layout was chosen. Absolute energy flow quantities are not shown in this version of the diagram, but are available in the underlying study. In 2010 primary energy consumption in Stuttgart was 20.300 GWh.

The diagram is used to promote a better understanding of the consuming sectors in the city, and the types of energy used. The SEE project aims to reduce Stuttgart’s energy consumption by 20% in 10 years and to transition to non-fossil fuels.

Stuttgart has actually won a first prize in a competition for energy efficient cities in 2016. It is thus setting a benchmark for other German cities. The above Sankey diagram is featured in this promotional video (in German) [at 2:36] and also briefly in this video (in German) [at 0:48] by IBP Fraunhofer.

A high resolution version of the Sankey diagram can be found here.