The article ‘Aprovechamiento de la energía procedente del frenado regenerativo en ferrocarriles metropolitanos’ by Álvaro López López published in the Spanish journal ‘Anales de Mecánica y Electricidad (May/June 2013)’, pp 12-18 has the following Sankey diagram.

No absolute numbers are given here. Still, we understand that from the motion energy during braking of the train a part (green flow) can be recovered and is being used for secondary systems (‘SSAA’) as well as being fed back into the overhead wire (‘cantenaria’).

Not sure though whether this Sankey diagram is a representation of the energy recovery during braking action only, or of the energy flows on a typical train ride.

This Sankey diagram for energy flows in Switzerland 2015 is by Max Blatter of energie-atlas.ch.

Flows are in TJ. The diagram has a consistent color coding: electricity in light blue, oil and derivates in orange, natural gas and biogas in yellow.

Sectors where energy is used are shown at the bottom right with private housholds, industry, services, traffic and agriculture.

Interesting to see that Switzerland’s electricity exports and imports were about equal size in 2015 (blue arrows to/from the top).

A 2007 energy flow Sankey diagram for Switzerland was presented in this post.

The European R&D project RenewIT studied energy concepts for renewable energy supply of data centres. The project partners from Spain, Italy, UK, Germany and The Netherlands looked at 18 different energy models.

In the final project report each of the concepts are described, accompanied by a Sankey diagram.

The above is figure 3.53 from p. 177 of the report showing the “Sankey chart for the distribution of average energy flows per year within different subsystems of concept 7 for scenario 3”.

Many more equally beautifully crafted Sankey diagrams can be found in the report, check chapter 3.5 Simulation Results of the publication Deliverable D4.5 Catalogue of advanced technical concepts for Net Zero Energy Data Centres. Authors: Nirendra Lal Shrestha, Noah Pflugradt, Thorsten Urbaneck (TUC); Angel Carrera (Aiguasol); Eduard Oró, Albert Garcia (IREC); Hans Trapman, Gilbert de Nijis, Joris van Dorp (DEERNS); Mario Macías (BSC) (get it here)

From a July 2013 article titled ‘Energy and exergy analyses of a Zero emission coal system’ by Linbao Yan, Boshu He, Xiaohui Pei, and Chaojun Wang of Beijing Jiaotong University, available at Researchgate. This Sankey diagram is for “the exergy flow of the improved Z[ero] E[mission] C[oal] system at benchmark condition”.

Fig. 4. Sankey diagram of the exergy flow of the improved ZEC system at the benchmark condition.

All flows are in kJ. The individual process steps if the system are only labeled with acronyms. They are explained in the article: GF is gasifier, CL is cleaner, RF is a reformer, and CH is a CO2 heater. The article also features the energy flow Sankey diagram.

Interested in the energy flows of the Euopean countrues (EU-28)? Check out the Sankey diagram tool on the EUROSTAT webpage (the European Statistics Office).

You can choose to view the energy flows for individual countries, or the total for all EU-28. Switching between the data for the years 1990 up to 2014 lets you compare the changes over the last 25 years. The sidebar offers display options for the Sankey diagram.

Nice visualisation and much more fun to work with than statistics data in tables.

Sweden is administratively organized in 21 counties, called “Sveriges län”.

A new report ‘Energistatistik för Sveriges län och kommuner för år 2013’ (Energy Statistics for Swedish Counties and Municipalities on the year 2013), published by Länsstyrelsernas Energi- och Klimatsamordning (LEKS) features energy flow Sankey diagrams for all counties.

Here is an example for Skåne from page 17:

All flows in GWh per year. Percentage breakdown for contribution of fuels (left side) and for consumption (right side).

Actually the energy picture looks quite differently in some counties: For example, Södermanlands län (on page 19) has 33% coal/coke (‘Kol/Koks’). Kronobergs län’s most important energy source with a share of 29% is biomass (‘Biobränsle’).

Twenty-one wonderful Sankey diagrams … a sheer joy for a Sankey fan like me.

The article ‘Understanding China’s past and future energy demand: An exergy efficiency and decomposition analysis’ by Paul E. Brockway, Julia K. Steinberger, John R. Barrett, and Timothy J. Foxon (all of Sustainability Research Institute, School of Earth and Environment, University of Leeds, UK) appeared in Applied Energy 155:892-903 in October 2015 and features a comparison of China’s energy use in 1971 and 2010. These Sankey diagrams were drawn up to show “the overall flow of exergy to end useful work, and the exergy losses that occur during the various conversion processes”.

China’s energy usage is roughly tenfold in 2010 compared to 40 years ago (37 Mtoe up to 355 Mtoe). Not sure whether both diagrams are setup on the same scale but judging from e.g. the black coal flow (140 Mtoe in 1971, 577 Mtoe in 2010) that is about 4 times wider, I would say they are.

Another interesting detail in these diagrams is that the authors have included food and feed as energy source. This is the first time I see this in a national energy flow map. Given that the energy content of this “fuel” is higher than both combustible renewables and renewables together, it seems justified to include it. The efficiency of turning food and feed energy into muscle work, however, is very low (approx. 3%).

I invite you to read the full article (open access) and to comment on the Sankey diagrams shown in Appendix B.

This Sankey diagram is from a presentation by a student team of University of Maryland. They participated in a Hydrogen Student Design Contest in 2011/2012 sponsored by the Department of Energy

The Sankey diagram is for a combined heat, hydrogen, and power (CHHP) system for the UoMD campus.

Flows don’t depict absolute values, but rather how the fuel input (municipal solid waste, organic waste, natural gas) is split into energy outputs (electricity, hydrogen, and steam). Losses (52.4%) at each process stage are shown as red arrows.