After many national energy flow balances, some of which I have presented here on the blog, energy flow balances on a regional level are now coming out of France.

Benoît Thévard who writes on the ‘Avenir Sans Petrol’ blog (a French version of Peak Oil) has an interesting post on ‘Un scénario de transition énergétique citoyen pour la Région Centre’ (translated: An civil energy transition scenario for the Central Region). It summarizes a report published March 2015 by VEN Virage Energie Centre-Val de Loire.

The report features two Sankey diagrams. The first on page 33 is for the actual 2009 energy flows in Centre-Val de Loire (check here to find out about this French region)

Flows are in TWh. Production of nuclear energy comes with huge losses (efficiency approx. 35%). The main consumers in the region are residential and services, followed by transport. Energy consumption in industry plays a comparably smaller role in the region. The report explains that the region is vast and not densely populated and houses are older and larger on average compared to other regions (“le territoire est vaste et peu dense et les logements sont anciens et sont plus grands”). Another report mentioned on p. 21 calls the region énergívore (a beautiful word I read for the first time).

The other Sankey diagram on page 37 shows a nuclear-free and almost fossil fuel free scenario for 2050. Overall consumption is drastically reduced (2009 energy consumption approximately 75 TWh, 2050 energy consumption scenario 32,4 TWh). The scenario relies on a diversification of energy sources with an emphasis on wind energy and biogas. The region would hardly export any energy in 2050 anymore.

Just like for the India 2031 scenario I discussed in my last post, the two Sankey diagrams shouldn’t be compared directly, since the scale is different.

The report also has clear and straight-forward explanation on how to read the diagrams (page 32). This “diagramme de Sankey se lit de la gauche vers la droite, en partant des productions régionales d’énergie primaire et des importations, sur la gauche, pour aller jusqu’au consommateur final, sur la droite. L’épaisseur des traits est proportionnelle aux flux physiques exprimés en TWh.”

I think this a remarkable piece of information for the public. And not only because it contains Sankey diagrams. It is beautifully non-academic and inspiring to read. Those of you who understand French should have a look.

I have often wondered why we don’t see more Sankey diagrams coming out of India. With a population of 1.252 billion and a solid engineering education (according to AICTE 2011/2012 report: 3495 degree-granting engineering colleges in India with an annual enrollment crossing 1.2 million, 16% of Indian students take an engineering/technology course, number of graduates from technical colleges was over 700,000 in 2011) I would have expected more.

Maybe it is just because I don’t know how to read and write in Hindi, to look for the right term. This should be Sankey diagram in Hindi (please correct me if I am wrong): sankey_diagram_hindi

Anyways, the 2006 report ‘National Energy Map for India. Technology Vision 2030* published by the Office of the Principal Scientific Adviser to the Government of India (PSA/2006/3) does have a number of Sankey diagram figures.

This one shows energy flows for India in 2001

This Sankey diagram below is for one of the different scenarios for energy generation and use in India in 2031, called the ‘High energy efficiency scenario’. The stacked bar at the left is lower, but the absolute numbers for total commercial energy supply are much higher in 2031 than in 2001 in all energy scenarios, so these diagrams mustn’t be compared directly one to another.

See the appendix A5 (pp 271-278) for more Sankey diagrams for other 2031 Indian energy scenarios.

Tom Van Heeswijk and Changsoon Choi, landscape architecture master students at Wageningen University in the Netherlands have created the below “preliminary Sankey diagram of the Amsterdam energy system”. This is part of the larger project URBAN PULSE described on the research page of the NRG lab website.

Only the top part of a larger Sankey diagram is seen here, the bottom part with fossil fuels apparently cropped. No units or figures shown, so just a schematic visualization.

Nevertheless some interesting features: in contrast to many other Sankey diagrams, nodes are not depicted with outlines but shown as gaps with their name. Electricity is highlighted as red bands while all other flows have a single-hatching fill pattern.

Beauty of simplicity…

From a slideshow by Convion (Finland) on its fuel cell technology.

Using a feed of 8,42 kg natural gas per hour with an energy content of 114,75 KW (based on the lower heating value) the CHP equipment yields 59,5 KW electric energy and heat. Biogas or hydrogen can also be used as fuel.

Electrical efficiency is between 53 and 65% net AC, the total energy efficiency is larger 85%.

An updated diagram of the energy flows in Europe has been published on the European Energy Agency (EEA) website. This is for the EU-28 states.


Copyright holder: European Environment Agency (EEA)

I had previously posted about the 2010 diagram (here). The data is for 2012. Flows are in MToe.

The CESAR (Canada Energy Systems Analysis Research) blog at www.cesarnet.ca had been idle for a while, but reopened 2015 with a post on Québec’s energy flows and related carbon dioxide emissions.

The post ‘The State of Energy in Quebec – 2015’ features two Sankey diagrams originally from a report in French language ‘État de l’énergie au Québec’ by HEC Montral (PDF here). Benjamin Israel is the author (should I say artist?) of these Sankey diagrams.

The first Sankey diagram is on Québec’s energy flows in 2012. Flows are in petajoule (PJ). 1 petajoule is described for everybody to understand as “(278 GWh) corresponding to the energy consumption of approximately 10.000 households in Québéc.”

Four columns give a structure to the diagram: energy sources, transformation, use, efficiency of the system. The upper part depicts energy produced in Quebec (“Énergie Produite en Québec”). Energy sources are purely renewable: hydro, wind and biomass. The bottom part shows fuel imports into the province: petroleum, natural gas, uranium, coal. Grey arrows collect the losses. Interesting to see how losses from energy generation and refineries in column 2 dive beneath crossing bands to rejoin the other losses in column 4.

The second Sankey diagram (from p. 27 in the HEC document) is a summary of greenhouse gas (GHG) emissions (in French: ‘émissions de gaz à effet de serre’ short: GES) in Québec in 2012.

Given the information from the above energy diagram, where Québec domestic energy production is 100% from renewable sources, it is not surprsing to see that the carbon emissions are mainly from imported energy. Combustion of fossil fuels makes up for 57 of the total 78 Mt CO2-equivalent emissions. The remaining 21 Mt of CO2-equivalent emissions are from industrial processes, agriculture and waste.

Québec’s per capita GHG emissions ranges lowest with 9,7 tonnes of CO2-eqs compared to other Canadian provinces (see scale in lower left).

Beautifully crafted Sankey diagram. I hope to see more on the CESAR blog in the future.

The article ‘The Use of Energy in Malaysia: Tracing Energy Flows from Primary Source to End Use’ by Chinhao Chong, Weidou Ni, Linwei Ma, Pei Liu and Zheng Li features the two Sankey diagrams below. The article is available open access in Energies 2015, 8(4), pp. 2828-2866.

The first diagram is an ‘Energy Allocation Diagram’ that is structured (from left to right) in columns, fuel, primary energy supply (energy generation), primary energy supply (energy conversion), consumption/use in different sectors. The consuming sectors (transport, commercial, residential, etc.) are further broken down into groups, offering one more level of detail. Flows are in million tonnes of oil equivalents (Mtoe), data is for 2011.

The other Sankey diagrma offers a detailed view of oil and oil products. Flows are also shown in Mtoe, data again for 2011. The upper half is domestic production, the bottom part shows imports. ‘ATF’ could be automobile transmission fuel (machine oil), not sure about ‘AV’. Losses and stock changes branch out vertically to the top.

A nice, really well-structured diagram. Clear and comprehensible.

The 2012 GEA Global Energy Assessment report (GEA Global Energy Assessment – Toward a Sustainable Future, Cambridge University Press, Cambridge UK and New York, NY, USA and the International Institute for Applied Systems Analysis, Laxenburg, Austria) features five maps showing energy trade in the world on pages 128/129.

These can almost be considered Sankey diagrams, so I am featuring them here on the blog.

This one is for embodied energy in trade goods.

And this one is a classic oil and oil product trade flows map:

Flows lead from a specific color-coded region to another. The quantities are clustered in arrows with three different widths as shown in the legend (1, 5, 10 Exajoule)