Tag: France

WEEE in Midi-Pyrénées

From what I know, France’s approach to tackling energy and waste issues is to break the topic down to the regional level, and to involve local stakeholders.

Here is an article on ‘Métabolisme territorial et filières de récupération-recyclage: le cas des déchets d’équipements électriques et électroniques (DEEE) en Midi-Pyrénées’ by Jean-Baptiste Bahers that was published in the journal Développement Durable et Territoires. Vol. 5, n°1 in February 2014.

It discusses the ‘Territorial metabolism and recovery-recycling chain: the example of Waste Electrical and Electronic Equipment (WEEE) in the “Midi-Pyrénées” region and has the following Sankey diagram figure.


Licensed under CC BY-NC 4.0

WEEE waste streams are in kilo tonnes (kt) in the year 2008. Additionally, recovered energy from waste treatment is shown (in MWh) with orange arrows. The red line delimits the region, so apparently the electronics waste recycling and disposal (élimination) takes place outside the Midi-Pyrénées region. Some flows are labeled with a range (e.g. 6-14 kt), which is obviously difficult to draw as Sankey arrow. My guess is that the median value was used to determine the actual width of the affected arrows. A nice feature are the per capita values (e.g. 2-4 kg/hab), which makes it much easier to grasp and to relate to for the indivdual person living in Midi-Pyrénées.

Wood Flows in Auvergne Rhône-Alpes

Following up to my post on energy flows from biomass in the Auvergne Rhône-Alpes region, here is another great Sankey diagram on wood flows by Auvergne-Rhône-Alpes Énergie Environnement (AUR-EE) agency.


Flows are in 1,000 m³ (f) wood fibre equivalents (read more about this unit here). The annual average of the years 2009 to 2013 in the region is visualized.

Wood is used for energy generation (top part), wood products (middle section), and pulp & paper (bottom part). Imports of wood or wood-based products come in from the grey box at the top, and export streams leave to the bottom grey box. Import and export in this case is from/to the area outside the Auvergne Rhône-Alpes region.

The green box on the left represents the existing standing wood stock (estimated at 704,700 thousand m³ wood fibre equivalents), which has an annual increase of 23,066 m³ (f) on average. Only 8,144 m³ (f) are removed from the forests per year.

The color coding relates to the data reliability (fiabilité des données): Green flows are based on reliable data, while yellow is for medium reliability and red for less reliable.

Biogas in Auvergne-Rhône-Alpes region

The French region Auvergne-Rhône-Alpes in the south-east of the Hexagone borders with Switzerland and Italy. Lyon and Grenoble are located in this region, known for skiing, lush pastures … and great cheese!

Auvergne-Rhône-Alpes Énergie Environnement (AUR-EE) is a regional agency that works to bring together players in the renewable energy field and to promote RE projects.

Given the agricultural character of Auvergne-Rhône-Alpes, biomass use for energy generation has been going strong in recent years. The agency has created energy flow Sankey diagrams for existing biogas installations, as well as a projection for the ones being under development.

Data is for 2017 and for the scenario where all projects currently under development would already completed. The yellow stream (‘déchets ménagers’) is household waste, providing 374 GWh of energy. Manure and other side-products from agriculture (green arrow) contributes another 260 GWh.
The stacked bar on the left hand side of the diagram indicates the potential availability of biomass by 2035, and one can see that only a small fraction of it is currently being taken advantage of.
Biogas is produced in anaerobic digesters (‘méthanisation’) and the region yields some 271 GWh electricity and 200 GWh heat per year from cogeneration plants. Already almost 100 GWh of biogas could be injected to the natural gas network, allowing for storage of the energy.

Note that smaller or even negligible flows are still shown with a minimum width in order to make them visible (these thinner arrows are not to scale with the others).

Réunion Island Energy Sankey

This Sankey diagram visualizing the energy balance for the French island Réunion has already been published back in 2010 in an article on reliability of supply in future power systems. (Mathilde Drouineau, Nadia Maïzi, Vincent Mazauric, Edi Assoumou. Long term planning tools and reliability needs: focusing on the Reunion Island. 3rd IAEE Rio 2010 International Conference “The Future of Energy: Global Challenges, Diverse Solutions”, Jun 2010, Rio de Janeiro, Brazil. 14 p., 2010). Access article here.

The flows are in Mtoe for the year 2007. The authors have been using the Markal/TIMES models to obtain data and study alternatives for future energy scenarios for the Réunion Island.

Landscapes of Climate Finance, I4CE

What is landscape of climate finance? A paper published December 2016 by I4CE tells us that “Landscapes of climate finance are comprehensive studies mapping financial flows dedicated to climate change action and the energy transition. Covering both end-investment and supporting financial flows from public and private stakeholders, [they] draw the picture of how the financial value chain links sources, intermediaries, project managers and the end investment.”

The paper by Hadrian Hainaut (I4CE), Andreas Barkman (EEA) and Ian Cochran (I4CE) titled ‘Landscapes of domestic climate finance in Europe: Supporting and improving climate and energy policies for a low-carbon, resilient economy’ features two interesting Sankey diagrams.

This is the ‘Landscape of Climate Finance in France 2014’:


Flows are in billion Euro. Sources and receiving sectors indicated with distinctive black boxes. The authors opted for strictly horizontal/vertical arrow routing. There are no individual quantities at each arrow, so the actual numbers can only be estimated from the arrow proportions.

This is the ‘National Climate Finance in Belgium 2013’:


Flows are in million Euros. Some muddle here at the exit of the top light blue box where the arrows overlap instead of showing the sum of roughly 2000 m€ spending. This coincides with three overemphasized arrow heads for the arrows leading to “Public Investments”, “Policy Incentives” and “Grants”. Arriving arrows at the box “Climate Mitigation” overlap and the Sankey diagram could benefit from clearing up here.

Not sure about the ESDC voting: “France: huit points, La Belgique: dix points” maybe 😉

I had reported on climate finance diagrams back in 2014 when the concept was first presented by Climate Policy Initaitive (CPI) but had since lost sight of them. I am happy to see that the idea is still alive and being taken up in a number of countries in Europe. Also good to see that the diagrams are not yet regulated by a standard and there is some “diversity” among these diagrams.

Regional Energy Flows Nouvelle-Aquitaine

Nouvelle-Aquitaine is a region in the southwest of France, with Bordeaux being its capital.

France, despite being a rather centralized, Paris-focused country relies on a decentralized approach for sustainable development, greenhouse gas (GHG) emissions reductions and energy saving. Thirteen so-called ‘regional energy agencies’ have been founded since 1995 engaging with regional actors and local communities. AREC (Agence Régionale d’Évaluation Environnement et Climat) is the environment and climate agency for the Nouvelle-Aquitaine region.

Many publications on energy and climate change are available on their website. Below is a Sankey diagram depicting the regional energy balance for Nouvelle-Aquitaine (Source: ‘Profil énergie et gaz à effet de serre en Nouvelle-Aquitaine – Année 2015 – Edition 2017’).

Flows are in GWh for 2015. Overall primary energy was 283.605 GWh, with 182.719 GWh final energy consumption. On the left side energy sources are split into imports (from outside Nouvelle-Aquitaine, 88%) and regionally produced energy, 12%). As is common in France, nuclear energy dominates the picture. On the right side we see the breakdown of energy consumption. The services sector (tertiary sector) is featured explicitly. It is responsible for 13% of Nouvelle-Aquitaine’s energy consumption, less than industry (19%) but more than agriculture (5%).

The Sankey diagram is very colorful and sports round icons. This goes well with the overall style of the report that targets explicitly at local communities and actors.

French Regional Energy Scenario 2050

After many national energy flow balances, some of which I have presented here on the blog, energy flow balances on a regional level are now coming out of France.

Benoît Thévard who writes on the ‘Avenir Sans Petrol’ blog (a French version of Peak Oil) has an interesting post on ‘Un scénario de transition énergétique citoyen pour la Région Centre’ (translated: An civil energy transition scenario for the Central Region). It summarizes a report published March 2015 by VEN Virage Energie Centre-Val de Loire.

The report features two Sankey diagrams. The first on page 33 is for the actual 2009 energy flows in Centre-Val de Loire (check here to find out about this French region)

Flows are in TWh. Production of nuclear energy comes with huge losses (efficiency approx. 35%). The main consumers in the region are residential and services, followed by transport. Energy consumption in industry plays a comparably smaller role in the region. The report explains that the region is vast and not densely populated and houses are older and larger on average compared to other regions (“le territoire est vaste et peu dense et les logements sont anciens et sont plus grands”). Another report mentioned on p. 21 calls the region énergívore (a beautiful word I read for the first time).

The other Sankey diagram on page 37 shows a nuclear-free and almost fossil fuel free scenario for 2050. Overall consumption is drastically reduced (2009 energy consumption approximately 75 TWh, 2050 energy consumption scenario 32,4 TWh). The scenario relies on a diversification of energy sources with an emphasis on wind energy and biogas. The region would hardly export any energy in 2050 anymore.

Just like for the India 2031 scenario I discussed in my last post, the two Sankey diagrams shouldn’t be compared directly, since the scale is different.

The report also has clear and straight-forward explanation on how to read the diagrams (page 32). This “diagramme de Sankey se lit de la gauche vers la droite, en partant des productions régionales d’énergie primaire et des importations, sur la gauche, pour aller jusqu’au consommateur final, sur la droite. L’épaisseur des traits est proportionnelle aux flux physiques exprimés en TWh.”

I think this a remarkable piece of information for the public. And not only because it contains Sankey diagrams. It is beautifully non-academic and inspiring to read. Those of you who understand French should have a look.

Ate your muesli this morning?

I have talked about a cereals Sankey diagram by INRIA Grenoble a couple of weeks ago in this post.

Here are two more Sankey diagrams from the underlying article ‘Etude des flux de céréales à l’echelle locale: Exemples en Rhône-Alpes, en Isère et dans le SCOT de Grenoble’ by J. Courtonne, J. Alapetite, P. Longaretti, D. Dupré.

These are the mass flows for cereals production in France (2007/2008) in Mt (1000 tons)

Here is the same cereals process chain “translated” into a water footprint. Unit is million cubic metres of water consumed.

A very clear structure in both diagrams with three columns: grains production, transformation and final products. Choice of color corresponds to the topic.