Tag: U.S.

Unlocking the Value of Garbage

Yale School of Forestry & Environmental Studies and The Connecticut Energy & Environmental Protection Agency have conducted a study on waste flows titled ‘Unlocking the Value: Transforming the Connecticut Materials Economy’.

The study features two Sankey diagrams that show the present situation (2010) and a an alternative scenario, where much of the materials are recovered.

This is the current situation in which only 25% of the 3.16 Mt of waste (Building C&D Waste not considered) are recycled.

The authors explain that

“Each year Connecticut residents and businesses generate more than three million tons of munici pal solid waste (MSW, or “regular trash”). Currently existing recycling and reuse programs capture a portion of the value of Connecticut’s waste, while waste-to-energy facilities process and recover energy from most of the MSW that is not recycled. With our recycling infrastructure underutilized, and resource recovery facilities at capacity, there is vast potential to transform our management and processing systems to further unlock the economic potential of waste.”

The optimized scenario with much increased recycling of materials (almost 80%) is shown in this diagram:

Connecticut is looking into the environmental and economic benefit of a recycled materials econonmy.

via Talismark blog

Phosphorus Flows in the U.S.

Following up to my last post, here is another Sankey diagram for phosphorus flows. This one is by Jason Pearson, TRUTHstudio and can be found in the ‘Visualization’ section of his website. Jason is also the designer of the Economy Maps (see this March 2012 post).

Jason says that “the diagram demonstrates the key point: that only 15% of the phosphorous in the US food supply chain is ingested, with the remainder ending up as waste. The diagram also shows the proportion of phosphorous used or wasted in non-food supply chains”

This one is more colorful than the Dutch one. Flows are in kt (kilotons). It has a left-to-right orientation (the other was vertical) and is very compact with almost no space betweend the bands, almost like in a block-style diagram. As a concession to this dense style, diagonal arrows don’t maintain their width.

World Coal Flows

As promised in this post on U.S. 2010 Energy Flows here are some other Sankey diagrams from a July 2012 publication by Eric Shuster, NETL/DOE. These diagrams show world trade flows for coal.

The first one features the top coal exporters and their 2010 exports of coal to the regions America, Europe and Asia. This does not include domestic production, but just export. Indonesia and Australia are clearly the main exporters. Unit is in Mio short tons.

The other coal Sankey diagram is for U.S. coal imports and exports in 2010. Here the unit is in 1,000s of short tons, hence the two must not be directly compared. Also, the inset of the yellow arrow for domestic production in comparison to U.S. import/export is not to scale with the other flows shown on the flow map. In fact, all the blue Sankey arrows appear as a small export flow (81,716) in the yellow Sankey miniature, and all red flows on the world map are summarized as the tiny import flows (19,353).

The U.S. is primarily using its domestic coal and still able to export the surplus.

Stay tuned to see the world’s natural gas flows from the same publication

Alaska Energy Flows

Dug out a folder on the hard disk of my old computer where I had stored many Sankey diagrams. Great stuff there I had saved years ago. Problem is that at the time I didn’t label the diagrams properly, so that I am now trying to trace where I got them from.

Here is one I like quite a bit. It is featured on p. 24 of the Alsaka Energy Plan (available on the Alaska Energy Authority (AEA) website / directly access large PDF)

Alaska Energy Flows for 2006 in trillion BTU. Forget about the other fuels, this state’s energy is almost entirely based on crude. And – despite being an importer of oil – AK is primarily an exporter of oil. All other energy flows really seem to be insignificant because of the dominance of oil. Losses are not shown with streams, but rather are given as text on the node.

Economy Maps – visualizing environmental impacts

Following up to yesterdays post on the supply chain visualization by TRUTHstudio. Imagine the concept described for the meat production sector blown up to cover the all sectors of the U.S. economy, and showing all the links between these sectors. There you are: Economy Maps, “an interactive visual map of the United States economy and its environmental impacts” by Jason Pearson.

In the first version the economy maps covered 24 major sector groups, and were apparently “static”. However, they already were beautifully designed Sankey-style maps of the environmental impacts caused directly or indirectly by these sectors of the economy.

Here is an image from that first edition of Economy Maps:

Jason comments: “The CEDA database (from which Economy Map derives its data) was developed by Dr Sangwon Suh at UC Santa Barbara, and that image … was actually an illustration for an academic article by Dr Suh.”

Development has continued and today in Economy Maps 2.0 beta is available as a fully interactive browser based Java application or a downloadable file for Mac or Win. It allows to view the environmental impact for several categories (such as global warming protential, ozone depletion, acidification, land use, freshwater aquatic exotoxicity potential and so on). Each diagram is presented in a different color but with the same structure: The first column are the goods obtained from the different sectors. The middle column contains all sectors that have an exchange of goods. The right column represents the consumers, both private and governmental. For each impact category users can visually grasp the relative contribution of each sector to an environmental impact category represented by the width of the band. Each sector is profiled according to three distinct perspectives on environmental impact as explained in yesterday’s post.

I have included a video of Jason explaining the economy maps below, it is wortwhile watching to fully understand the details.

The diagrams are based on statistical financial data and makes use of the economic input-output life cycle assessment (EIOLCA) method. “Financial data are drawn from ‘use’ tables published by the Bureau of Economic Analysis (BEA) at the US Department of Commerce. Environmental data are drawn from Sustainable Materials Management: The Road Ahead, a report from the US Environmental Protection Agency (US EPA). The report includes an economy-wide study that identifies the relative contribution of each industrial sector to major environmental categories. The study makes use of output from the CEDA 3.0 Life Cycle Assessment (LCA) Economic Input/Output (EIO) database”.

It should be noted that there are a lot of assumptions built into the methodologies used to calculate environmental impacts, and some of these methodologies are quite controversial. Also, the data is from 1997, and financial interaction between the sectors has most likely changed since. According to the author, Economy Maps at present should be considered a prototype, and users “should be careful in relying on Economy Maps for ‘answers’ at this point…”

Users can pull the nodes of the middle column apart and sort them in order to untangle the spaghetti and get a clearer picture of the economic interactions between the sectors and their associated direct and indirect environmental impacts in the different categories. The height of the economy sector node represents the magnitude of the environmental impact, the font size of the node name corresponds to the node size. The nodes move with a nice soft scroll effect as we love it. Try the online version of Economy Maps 2.0 or download the desktop version.

Economy Maps are “work in progress” and we can expect updates as data for more recent years become available.

Here is the 60 second video of Jason explaining the Economy Maps. For a longer video visit economymap.org.

Kelsey Bixler’s personal Sankey diagram

Probably inspired by one of the many energy flow Sankey diagrams, such as the one shown in my last post, Kelsey Bixler of the ‘This blog is a system.’ blog has decided to make her own, quite personal hand-drawn diagram. This seems to have been part of an assignment. Kelsey “analyzed the various activities that involved the consumption of energy in a four hour period” of a typical weekday, including her activities at home, the trip to work, and her job at Chick’s Oyster Bar.

She writes: “Below is a “Sankey Diagram” inspired diagram of the networking between the extractors, distributors and users of energy, myself including, that I have described above.”

Now, who still says that we can’t do a Sankey diagram that shows the energy consumption caused by an individual?

Of course, the actual quantities are not shown in Kelseys diagram, but it would be safe to say that this image is more or less true for an average American, who has a car, lives in a house and uses industry products. As a rough estimate I would just divide the 98 quads (mentioned as the overall primary energy demand in the 2010 U.S. Energy Sankey diagram) by the roughly 308 Mio. citizens. The proportions of the Sankey arrows would most likely stay the same.

“From the body to the world” … every single one of us contributes to the big picture, and it is up to each of us to make this picture look different.

US Energy Flows in 2010

Check out NETL January 2012 newsletter. It features a Sankey diagram with the 2010 data on U.S. Energy Flows. Publication details are here.


Download high res version of the Sankey diagram (large PDF) here.

This was prepared by Eric Shuster and is an update to the Sankey diagrams published annually by LLNL. It has the energy carriers on the left, energy conversion in the middle, and energy use sectors on the right. Primary energy consumption in the U.S. in 2010 is estimated to have amounted to 98 quads (quadrillion BTUs).

“NETL energy analysts have produced for the public a set of Sankey diagrams based on data obtained from the Annual Energy Review 2010 recently released by the U.S. Energy Information Administration. Graphically representing both quantity and direction, the diagrams place in perspective the relative contributions of major domestic energy sources as well as the flow of fossil fuels around the world.

The “Estimated U.S. Energy Use in 2010″ flow diagram shows the quantity of fuels used to drive each of the sectors in the United States. Overall, 83 percent of the primary energy consumed in the U.S. is from fossil fuels and downstream, due to conversion efficiencies, 89 percent of the total energy delivered to the end-used sectors is derived from fossil fuels.”

The news item also has a link to another presentation ny NETL featuring global coal and gas related flows as Sankey diagrams. These are interesting as will and I will present them here in the near future. Update: Coal is here, natural gas still to come.

Interactive US Energy Sankey

Another interactive Sankey diagram for U.S. Energy Flows (similar to the one by Bloomberg’s David Yanofsky) also based on the LLNL Energy Sankey Diagram can be found on a web page of The National Academy of Sciences. Visitors can explore the energy mix and consumption.

Click here to visit web page and start exploring…

Flows are in quadrillion BTUs or ‘quads’. The footnote reads:

Hydro, wind, and solar electricity inputs are expressed using fossil-fuel plants’ heat rate to more easily account for differences between the conversion efficiency of renewables and the fuel utilization for combustion- and nuclear-driven systems. This enables hydro, wind, and solar to be counted on a similar basis as coal, natural gas, and oil. For this reason, the sum of the inputs for electricity differs slightly from the displayed total electricity output. Distributed electricity represents only retail electricity sales and does not include self-generation. The efficiency of electricity production is calculated as the total retail electricity delivered divided by the primary energy input into electricity generation. End use efficiency is estimated as 80% for residential, commercial, and industrial sectors, and as 25% for the transportation sector.

Nice graphics and a good idea to convey “What You Need To Know About Energy”.