Tag: waste

WEEE in Midi-Pyrénées

From what I know, France’s approach to tackling energy and waste issues is to break the topic down to the regional level, and to involve local stakeholders.

Here is an article on ‘Métabolisme territorial et filières de récupération-recyclage: le cas des déchets d’équipements électriques et électroniques (DEEE) en Midi-Pyrénées’ by Jean-Baptiste Bahers that was published in the journal Développement Durable et Territoires. Vol. 5, n°1 in February 2014.

It discusses the ‘Territorial metabolism and recovery-recycling chain: the example of Waste Electrical and Electronic Equipment (WEEE) in the “Midi-Pyrénées” region and has the following Sankey diagram figure.


Licensed under CC BY-NC 4.0

WEEE waste streams are in kilo tonnes (kt) in the year 2008. Additionally, recovered energy from waste treatment is shown (in MWh) with orange arrows. The red line delimits the region, so apparently the electronics waste recycling and disposal (élimination) takes place outside the Midi-Pyrénées region. Some flows are labeled with a range (e.g. 6-14 kt), which is obviously difficult to draw as Sankey arrow. My guess is that the median value was used to determine the actual width of the affected arrows. A nice feature are the per capita values (e.g. 2-4 kg/hab), which makes it much easier to grasp and to relate to for the indivdual person living in Midi-Pyrénées.

Losses in Fruit Production

Food loss or wastage has been a topic a previous posts here on the Sankey diagrams blog before (see here or here).

Here is another Sankey diagram from the dissertation ‘Environmental assessment of Catalan fruit production focused on carbon and water footprint’ by Elisabet Vinyes i Guix (p. 73). It visualizes losses in the production chain for apples and peaches in Catalunya.


For each kg of fruit arriving on the market (or at the point of sales), some 1.21 kgs of fruit are being cultivated. Losses occur in the farming process itself as well as along the retail system. Of the 1 kg fruit purchased by the consumer, only 83% is actually eaten. 17% turns into waste.

European Plastics Packaging Waste Study

Deloitte Sustainability in a 2017 report titled ‘Blueprint for plastics packaging waste: Quality sorting & recycling’ showed the results of “a quantitative and a qualitative analysis of the main packaging resins (PET, HDPE, LDPE, PP) based on the flows in France, Germany, Italy, Spain and the UK, which represent 70% of the plastic waste generated in Europe”.

The plastic waste streams for the year 2014 are shown as a Sankey diagram on page 16.


The collection rate that year on a European average was at 37% and the recycling rate at 13%. Most of the packaging waste goes to incineration and landfill.

The study also looks at improvement potential in plastics waste collection and recycling. The plastic packaging waste streams for a possible 2025 scenario with a collection rate of 74% and a recycling rate of 55% is also shown as Sankey diagram for comparison.

Household Waste Recyling in Spain

An interesting blog post titled ‘Cuando las cuentas no cuentan’ (which I would figuratively translate as ‘When the numbers don’t match’) by Sergio Sastre over at the ‘Residuos Profesional’ blog.

Looking in detail at the official municipal solid waste recycling numbers for all 17 autonomous communities in Spain, published by the Environment Ministry (Ministerio para la Transición Ecológica – MITECO) for 2016, Sergio and his team found that there are discrepancies in the data, and that data quality needs improvement.

The overall recycling rate for municipal solid waste (MSW) in Spain is 33.6% … still far from the 2020 goal to reach a 50% recycling rate.

This Sankey diagram shows the breakdown of waste streams.

Flows are in tonnes per year. Of the overall 21.7 million tonnes of MSW generated in Spain, only some 7.2 million tonnes were recycled in 2016 (pink streams). A large chunk if household waste is mixed (grey stream, residuos mezclados, RM), while only a quarter is collected separately (colored streams in the lower part of the figure, recogida selectiva, RS).

Some material can be recovered from the mixed waste stream at sorting facilities and in composting plants or biogas digestors.

Plastics’ Paths

How much plastic is being recycled, how much is being incinerated, and how much ends up discarded as waste on landfills (or eventually in the oceans)? This Sankey diagram shows the paths that 8300 million tons (or 8.3 billion tons) of plastic produced since 1950 have taken.

Figure (licensed under CC-BY-SA) by Hannah Ritchie and Max Roser at the great ‘Our World in Data’ website under the ‘Plastic Pollution’ topic.

Precious Metals and Critical Raw Materials

The EU funded PROSUM research project looks at ‘Prospecting Secondary raw materials in the Urban mine and Mining wastes’. The more than 15 institutions participating in the project have recently published their findings in a final report.

The report has some interesting Sankey diagrams on market input, stocks, waste generation and waste flows for product groups such as vehicles, batteries, precious materials and selected critical raw materials (CRMs) contained in batteries, electrical and electronic equipment (EEE) and vehicles.

Here is the diagram for vehicles in the EU28+2 (=EU28 plus Switzerland and Norway) market. Data relates to the year 2015.

Flows are in tons and ktons, blending two scales in one diagram. This merits its own post, I think. (read it here)

The electric vehicles currently driving on the roads are shown as “Stock”, meaning that the materials are in use and that they could eventually be recovered at the end of the life of the vehicle. This is the large stackd bar between “POM” (placed on market) and “De-reg Vehicles”. Again this stacked bar uses two different scales (tons and ktons).

Official report citation: Jaco Huisman, Pascal Leroy, François Tertre, Maria Ljunggren Söderman, Perrine Chancerel, Daniel Cassard, Amund N. Løvik, Patrick Wäger, Duncan Kushnir, Vera Susanne Rotter, Paul Mählitz, Lucía Herreras, Johanna Emmerich, Anders Hallberg, Hina Habib, Michelle Wagner, Sarah Downes. Prospecting Secondary Raw Materials in the Urban Mine and mining wastes (ProSUM) – Final Report, ISBN: 978-92-808-9060-0 (print), 978-92-808-9061-7 (electronic), December 21, 2017, Brussels, Belgium

U.S. Plastic Waste Streams

Ann Arbor based consulting firm RRS has published a Sankey diagam visualization of the plastic streams in the United States. This is from their Data Corner blog.

Breakdown is in percentage values only. The amount of 8,300 MMT seems to be an aggregated figure for a 65 year period from 1950 to 2015. And 80% has ended up on landfills.

Original data is from a study ‘Production, Use, and Fate of All Plastics Ever Made’ authored by Roland Geyer of the University of California, Santa Barbara; Jenna Jambeck of the University of Georgia; and Kara Law from the Sea Education Association.