Month: November 2016

Gold Market: Demand and Supply

Taking it easy with a casual Friday post. This Sankey diagram shows the world wide gold supply and demand in 2013.

This is from a post in the e!Sankey forum and available as sample file in their new release.

Data is from the ‘Thomson Reuters Gold Survey’. 4,736 tons of gold were traded that year with roughly 3,000 tons production from gold mines. Largest demand was from jewelry makers (2,198 tons) followed by people who purchased gold bars (1,337 tons).

Recovering Energy of Train Braking

The article ‘Aprovechamiento de la energía procedente del frenado regenerativo en ferrocarriles metropolitanos’ by Álvaro López López published in the Spanish journal ‘Anales de Mecánica y Electricidad (May/June 2013)’, pp 12-18 has the following Sankey diagram.

No absolute numbers are given here. Still, we understand that from the motion energy during braking of the train a part (green flow) can be recovered and is being used for secondary systems (‘SSAA’) as well as being fed back into the overhead wire (‘cantenaria’).

Not sure though whether this Sankey diagram is a representation of the energy recovery during braking action only, or of the energy flows on a typical train ride.

P2G: better done at home or offshore?

Great find by a follower of this blog who send me a link to this report in German available on the website of the German EPA (‘Umweltbundesamt’). The title translates as ‘Climate protection and regeneratively generated chemical energy carriers – infrastructure and system adaptation for the supply of regenerative chemical fuels from domestic and foreign regenerative energies’.

The report contains Sankey diagrams on 40 pages (!) like the two shown below. All of them are structured the same way with a vertical layout: a certain amount of energy available at production site, losses branching out to the right, and useful energy available on site shown as the remaining arrow at the bottom (colored in green).

From the management summary in English we learn that “this project aims at gaining first insights into the potential of renewable chemical fuels from renewable energy sources both domestic and abroad as well as the associated transport requirements. (…) [P]otentials and transport infrastructure for using renewable energy to provide storable energy carriers were analysed, being followed by a systematic comparison of the import routes of renewable gases, namely hydrogen (eH2) and methane (eCH4)”.

The assumption is that there are countries (e.g. Norway) that may have wind energy in excess, and regions (e.g. Turkey, Spain) where there is abundant potential for solar energy (PV). This electricity could be used for methanisation (power-to-gas, P2G). Gas from renewable energy could be stored in the German gas grid. The Sankey diagrams then show power-to-gas transformation on site and transporting the gas through pipelines to Germany, compared to the scenario of transporting electricity on the grid (with the associated losses) and to produce methane in Germany.

‘Klimaschutz und regenerativ erzeugte chemische Energieträger – Infrastruktur und Systemanpassung zur Versorgung mit regenerativen chemischen Energieträgern aus in- und ausländischen regenerativen Energien’ by Stefan Schütz of DBI Gas- und Umwelttechnik, Leipzig and Philipp Härtel of Fraunhofer-Institut für Windenergie und Energiesystemtechnik, Kassel. Report published Aug 2016 by German EPA (Umweltbundesamt, UBA). Download full report PDF here.

Thanks Axel from Germany for pointing me to this.