Month: June 2017

Feed-to-Food caloric flux Sankey diagram

Another way to look at energy flows! Here is a Sankey diagram of US feed-to-food caloric flux. This is from a paper by Shepon et.al. titled ‘Energy and protein feed-to-food conversion efficiencies in the US and potential food security gains from dietary changes’ published October 2016 in Environmental Research Letters (Environ. Res. Lett. 11 (2016) 105002 – doi:10.1088/1748-9326/11/10/105002) under Creative Commons CC 3.0

Flows are in Pcal (Peta calories, 1012 kcal). Production figures are based on data from U.S. National Research Council and a “Mean American Diet” (MAD) with an average consumption of 2500 kcal per day is used. We can see energy in three feed classes being transformed into energy in edible animal products. The authors explain:

“On the right, parenthetical percentages are the food-out/feed-in caloric conversion efficiencies of individual livestock categories. (…) Overall, 1187 Pcal of feed are converted into 83 Pcal edible animal products, reflecting a weighted mean conversion efficiency of approximately 7%.”

In light of this, energy conversion efficiencies of 30-40% seem to be fantastic…

Check out the article for another Sankey diagram of protein flux.

Global Paper Flows Sankey Diagram

Researchers from the Institute for Sustainable Resources (ISR) and the Center for Resource Efficiency & the Environment (CREE) at the University College London (UCL) have set up this Sankey diagram of global material flows in the paper life cycle, from primary inputs to end-of-life waste treatment.

Flows are in megatonnes based on data for 2012. We can see the five phases in the paper life cycle, from wood harvest over pulping, paper making, to use and discard/end-of-life. Almost half of the paper used and discarded worldwide in 2012 was recycled (194 Mt out of 399 mt). However, 154 Mt of used paper still ended up on landfills.

The authors further discuss environmental performance metrics. They point out that looking only at the recycling rate may lead to a wrong impression. They propose to also consider another recycling metrics (recycled input rate, RIR), and a material efficiency metrics.

The paper ‘Global Life Cycle Paper Flows, Recycling Metrics, and Material Efficiency’ by Stijn Van Ewijk, Julia Stegemann, and Paul Ekins has been published in the Journal of Industrial Ecology. A summary can be found here, or access the full article at Wiley Online Library (Open Access under Creative Commons license).

Thanks to the author Stijn van Ewijk for pointing me to this recent publication.

Energy Flows in Styrian Dairy Production

Styria is the second largest state of Austria, in the south eastern part of the country. It is famous for its beautiful mountains, its wines and some decent yodelling 🙂

It is also home to green tech industries, in fact “Styria is home to more than 150 clean technology companies … [whose] revenue totals €2.7 billion. This equals to 8 percent of the Gross Regional Product (GRP), and is one of the highest concentrations of leading clean technology companies in Europe.” (Wikipedia)

The ‘Styrian Promise’ is a project aiming at the implementation of energetically and economically meaningful energy efficiency concepts in Styian production companies. Case studies from food, textiles, metals and other industries are presented on the project wiki.

Above is a Sankey diagram depicting the energy balance at Obersteirische Molkerei Knittelfeld (Upper-Styrian dairy in Knittelfeld). Flows are in MWh per year. The main energy requirement is steam from natural gas: Whey drying and steam for milk pre-heating are the largest consumers of process heat. Read more detail on the dairy production here.