The ‘Landscape of Climate Finance’ is a project by the Climate Policy Initiative. CPI “works to improve the most important energy and land use policies around the world, with a particular focus on finance. (This) helps nations grow while addressing increasingly scarce resources and climate risk.”

At http://www.climatefinancelandscape.org/ the have put up graphically appealing and beautifully crafted slideshow with facts on climate finance. How much is spent? Where does the money go to? Who are the receiving countries. Please browse the slideshow here.

Below are two Sankey diagrams from the 2013 report on climate finance.

The first is a rather coarse overview showing the international funding of climate projects by OECD countries and Non-OECD countries. On the right side the recipients breakdown: within their own borders, OECD countries, Non-OECD countries. Details on the countries are available in the report. Flows are in billion US$.

The other Sankey diagram is more complex. Here we can see the sources of climate finance and intermediate agents, the instruments, the recipients and the uses (adaptation and mitigation).

The incoming flows from the left are mostly “not estimated” (NE) and therefore are not to scale with the outgoing arrows. There are many annotations on assumptions and constraints, so please don’t make conclusions directly from the image. In the online version one can hover over the nodes to receive more information.

Congratulations to CPI for this work. They are tackling a complex issue graphically, and make good use of Sankey diagrams for visualization.

A research group headed by Andrew Skelton and Sören Lindner at Cambridge University’s Centre for Climate Change Mitigation Research is “developing environmentally extended input-output models to assess greenhouse gas reduction across production layers and supply chains of the global economy.”

The figures on their webpage describing the group’s activities include this Sankey-style mapping of “flows of embodied emissions through the global economy [that] … help to visualise and explain … differences between production-based and consumption-based accounts of emissions”.

Unfortunately no high-res image is available. However, one can find the producing sectors on the left side (each of which identifiable by its own color) and their responsibility for a share of the 22.76 Gt direct CO2 emissions. On the right side one can see the consuming sectors and their use of input that has embodied emissions from the supply chain (two intermediate transformation steps in the centre).

Additionally one can find these two diagrams for embodied emissions from supply chains. The left one is for all major non-EU sources, the right one a breakdown for products and intermediates sourced from China.

Data is based on input-output (IO) statistics and Life Cycle Assessment (LCA). An interesting topic and a good use of Sankey diagrams IMHO. Read more on the research web page that also has links to the scientific publication made by the group.

The company with the catchy name ‘Useful Simple Projects‘ is “a design led consultancy [that works] with organisations and on major urban development projects to develop sustainability strategies, and identify opportunities for innovation”.

Here is a Sankey diagram they did for an energy strategey study for University College London’s Bloomsbury Campus.

Values are probably for a year. The Sankey diagram shows energy consumption in GW (red and blue arrows). The UCL campus has a cogeneration plant, so heat (green arrow) can be produced and distributed by district heating grid.

The numbers in grey show the carbon emissions in tons of CO2 linked to the energy consumption (most likely using characterization factors for electric energy production in the UK and for provision of natural gas). UCL has a low carbon strategy for the next years and this study helps them to review their goals.

This Sankey diagram is … simple and useful.

New Zealand’s Ministry for the Environment has the below Sankey Diagram on Greenhouse Gases (GHG) Emissions on their website.

It is interesting to compare this to the U.S. or to the world average. Similar GHG emissions diagrams have been published by the World Resources Institute WRI.

In NZ the main sources of emissions contributing to climate change are from agriculture (48%), while in the U.S. only 6.5% and on a world average this is only 13.2%. (Note: WRI data is for 2003, and there might be methodological differences in the background statistical data. But the proportions should be more or less correct).

Energy consumption accounts for more than 86% of the GHG Emissions in the U.S., and 44% in NZ. Quite a different panorama, and different challenges in New Zealand.

This one is from the report ‘Low Carbon Scotland: Meeting our Emissions Reduction Targets 2013-2027 – The Draft Second Report on Proposals and Policies’ available on the Scottish Government website.

The Sankey diagram visualizes “By Source and End User GHG emissions transfers for Scotland in 2010 (Mt CO2e)”. Data for the diagram from “Greenhouse Gas Inventories for England, Scotland, Wales and Northern Ireland 1990-2010 (Aether and AEA, AEAT/ENV/R/3314)”.
For those wondering (like I did!), ‘LULUCF’ is for ‘Land Use, Land Use Change and Forestry’.

According to the report

“Scotland accounts for only around 9% of the UK’s total energy consumption, but is rich in energy resources and produces a diversity of energy supply. The energy supply sector covers the production of energy, and in particular the generation of electricity, either in power stations or in large industrial process (like refining). Energy supply in Scotland produced 20.7 MtCO2e of greenhouse gas emissions in 2010, which equated to 37% of Scotland’s total in 2010.”

I found the idea behind the below Sankey diagrams quite compelling. Both are from the user manual of the ‘Umberto for Carbon Footprint’ software by ifu Hamburg. They are also the makers of e!Sankey, and it seems as if most of the e!Sankey software features are also included in this new software for modeling and calculating product carbon footprints.

I played with the demo models included in the trial version, one of which is for a toy parrot. The product life cycle is modeled from cradle-to-grave with the raw materials, assembly, distribution, use, and end-of-life phases. Using embodied carbon data from an LCI database for the raw materials and energy used along the life-cycle, a carbon footprint is calculated. The material and energy flows related to the product manufacturing and use are then shown as a Sankey diagram.

The Sankey view can be switched to an ‘embodied carbon’ or carbon load view, which shows the ‘carbon rucksack’ of the product as it cumulates along the supply chain.

In this second Sankey diagram the arrows representing the greenhouse gas burdens caused by the waste disposal phase are turned around, so that both the upstream supply chain as well as the downstream processing after the product use are visually added. They form one large Sankey arrow (shown in green here) for the product’s carbon footprint.

This is of course not a Sankey diagram drawing software, but rather a modeling or calcalation tool for carbon footprints. Still, I think, this is a fine use case where Sankey diagrams unfold their full visualization power. It can be immediately grasped which stage of the life cycle, or which raw material or energy supply contributes most to the carbon footprint.

Note: Have added this to the software list.

Last August I reported about a Sankey diagram showing World GHG emissions, published on the website of the World Ressource Institute (WRI). I couldn’t show the diagram due to copyright concerns in that post, but to my delight, Tim Herzog, co-author of the WRI publication and Director of Online Communciations at WRI in a comment to my post granted permission. Thanks, Tim!

So here it is:

The diagram shows the activity sectors from which of greenhouse gases (GHGs) originate. The largest portion is from energy generation (including transport), followed by land use change and agriculture. Direct emissions from other industrial processes (other than combustion processes) and waste is comparatively small. The arrows on the right side give a breakdown into the individual gases with carbon dioxide as the main greenhouse gas (77%) followed by methane and N2O.

All data is for 2000 and given in CO2 equivalents with the GWP 100a weighting factors for methane, nitrous oxides, HFCs and PFCs from the IPCC 1996 report. The total quantity is an estimate of 41755 MtCO2 equivalent. Land use change shows negative numbers too, because credits can be given for reforestation (newly planted trees absorbing CO2).

Here is the Sankey diagram from the same report just for the 2003 GHGs in the United States.

The overall CO2 equivalents are 6978 Mt in the US in that year, but the portion of GHGs from fuel combustion is higher. CO2 is 85% of the GHGs. For more details on the US GHG Sankey diagram, go to the WRI web page.

Kudos to the makers of these Sankey diagrams. Apart from the rich content they convey, they are also beautiful examples of how elegant Sankey diagrams can be.

I was pointed to an article on carbon footprint, that used Sankey diagrams to underline a method of carbon accounting along the supply chain. This article was part of the “first virtual global conference on climate change” CLIMATE 2008 that took place, yes, exclusively on the Internet from November 3 to 7, 2008. (I must admit that this event passed largely unnoticed by me, although reading some of the papers now gives me the impression that it would have merited more attention.)

The paper titled “Carbon Accounting and Carbon Footprint – more than just diced results?” by Prof. Mario Schmidt from Pforzheim University describes the various approaches of corporate carbon accounting, carbon footprint of products, and Life Cycle Assessment LCA. Schmidt introduces a method that allows determining “cumulative emissions … at each point of the supply chain up to the POS”, and calls this the CO2 backpack.




The four Sankey diagrams above from the article illustrate the idea. They show (1) the CO2 equivalent emisisons along the supply chain, (2) the value added in a supply chain, (3) the relative CO2 emissions per value of product, and (4) the total emissions of the products along the supply chain with sectoral gate-to-gate, cradle-to-gate or crade-to-grave approaches.

This article is well worth reading, you should do so while it is still available online. Update: the domain has gone offline
Schmidt is an acclaimed expert in Sankey diagrams and has also published on the history and methodology of Sankey diagrams.